import { BlockCipher, } from './cipher-core.js'; // Lookup tables const _SBOX = []; const INV_SBOX = []; const _SUB_MIX_0 = []; const _SUB_MIX_1 = []; const _SUB_MIX_2 = []; const _SUB_MIX_3 = []; const INV_SUB_MIX_0 = []; const INV_SUB_MIX_1 = []; const INV_SUB_MIX_2 = []; const INV_SUB_MIX_3 = []; // Compute lookup tables // Compute double table const d = []; for (let i = 0; i < 256; i += 1) { if (i < 128) { d[i] = i << 1; } else { d[i] = (i << 1) ^ 0x11b; } } // Walk GF(2^8) let x = 0; let xi = 0; for (let i = 0; i < 256; i += 1) { // Compute sbox let sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4); sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63; _SBOX[x] = sx; INV_SBOX[sx] = x; // Compute multiplication const x2 = d[x]; const x4 = d[x2]; const x8 = d[x4]; // Compute sub bytes, mix columns tables let t = (d[sx] * 0x101) ^ (sx * 0x1010100); _SUB_MIX_0[x] = (t << 24) | (t >>> 8); _SUB_MIX_1[x] = (t << 16) | (t >>> 16); _SUB_MIX_2[x] = (t << 8) | (t >>> 24); _SUB_MIX_3[x] = t; // Compute inv sub bytes, inv mix columns tables t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100); INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8); INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16); INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24); INV_SUB_MIX_3[sx] = t; // Compute next counter if (!x) { xi = 1; x = xi; } else { x = x2 ^ d[d[d[x8 ^ x2]]]; xi ^= d[d[xi]]; } } // Precomputed Rcon lookup const RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36]; /** * AES block cipher algorithm. */ export class AESAlgo extends BlockCipher { _doReset() { let t; // Skip reset of nRounds has been set before and key did not change if (this._nRounds && this._keyPriorReset === this._key) { return; } // Shortcuts this._keyPriorReset = this._key; const key = this._keyPriorReset; const keyWords = key.words; const keySize = key.sigBytes / 4; // Compute number of rounds this._nRounds = keySize + 6; const nRounds = this._nRounds; // Compute number of key schedule rows const ksRows = (nRounds + 1) * 4; // Compute key schedule this._keySchedule = []; const keySchedule = this._keySchedule; for (let ksRow = 0; ksRow < ksRows; ksRow += 1) { if (ksRow < keySize) { keySchedule[ksRow] = keyWords[ksRow]; } else { t = keySchedule[ksRow - 1]; if (!(ksRow % keySize)) { // Rot word t = (t << 8) | (t >>> 24); // Sub word t = (_SBOX[t >>> 24] << 24) | (_SBOX[(t >>> 16) & 0xff] << 16) | (_SBOX[(t >>> 8) & 0xff] << 8) | _SBOX[t & 0xff]; // Mix Rcon t ^= RCON[(ksRow / keySize) | 0] << 24; } else if (keySize > 6 && ksRow % keySize === 4) { // Sub word t = (_SBOX[t >>> 24] << 24) | (_SBOX[(t >>> 16) & 0xff] << 16) | (_SBOX[(t >>> 8) & 0xff] << 8) | _SBOX[t & 0xff]; } keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t; } } // Compute inv key schedule this._invKeySchedule = []; const invKeySchedule = this._invKeySchedule; for (let invKsRow = 0; invKsRow < ksRows; invKsRow += 1) { const ksRow = ksRows - invKsRow; if (invKsRow % 4) { t = keySchedule[ksRow]; } else { t = keySchedule[ksRow - 4]; } if (invKsRow < 4 || ksRow <= 4) { invKeySchedule[invKsRow] = t; } else { invKeySchedule[invKsRow] = INV_SUB_MIX_0[_SBOX[t >>> 24]] ^ INV_SUB_MIX_1[_SBOX[(t >>> 16) & 0xff]] ^ INV_SUB_MIX_2[_SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[_SBOX[t & 0xff]]; } } } encryptBlock(M, offset) { this._doCryptBlock( M, offset, this._keySchedule, _SUB_MIX_0, _SUB_MIX_1, _SUB_MIX_2, _SUB_MIX_3, _SBOX, ); } decryptBlock(M, offset) { const _M = M; // Swap 2nd and 4th rows let t = _M[offset + 1]; _M[offset + 1] = _M[offset + 3]; _M[offset + 3] = t; this._doCryptBlock( _M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX, ); // Inv swap 2nd and 4th rows t = _M[offset + 1]; _M[offset + 1] = _M[offset + 3]; _M[offset + 3] = t; } _doCryptBlock(M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) { const _M = M; // Shortcut const nRounds = this._nRounds; // Get input, add round key let s0 = _M[offset] ^ keySchedule[0]; let s1 = _M[offset + 1] ^ keySchedule[1]; let s2 = _M[offset + 2] ^ keySchedule[2]; let s3 = _M[offset + 3] ^ keySchedule[3]; // Key schedule row counter let ksRow = 4; // Rounds for (let round = 1; round < nRounds; round += 1) { // Shift rows, sub bytes, mix columns, add round key const t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow]; ksRow += 1; const t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow]; ksRow += 1; const t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow]; ksRow += 1; const t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow]; ksRow += 1; // Update state s0 = t0; s1 = t1; s2 = t2; s3 = t3; } // Shift rows, sub bytes, add round key const t0 = ( (SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff] ) ^ keySchedule[ksRow]; ksRow += 1; const t1 = ( (SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff] ) ^ keySchedule[ksRow]; ksRow += 1; const t2 = ( (SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff] ) ^ keySchedule[ksRow]; ksRow += 1; const t3 = ( (SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff] ) ^ keySchedule[ksRow]; ksRow += 1; // Set output _M[offset] = t0; _M[offset + 1] = t1; _M[offset + 2] = t2; _M[offset + 3] = t3; } } AESAlgo.keySize = 256 / 32; /** * Shortcut functions to the cipher's object interface. * * @example * * var ciphertext = CryptoJS.AES.encrypt(message, key, cfg); * var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg); */ export const AES = BlockCipher._createHelper(AESAlgo);